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1 Département de Physique, Faculté des Sciences, BP 4010, Meknès, Morocco
2 Laboratoire de Physique de la Matière Condensée, Faculté des Sciences, BP 20, El Jadida,
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Abstract
Phase transitions of a four-component lattice gas or spin-3/2 Blume–Emery–
Griffiths model, with a single-ion uniaxial anisotropy and nearest-neighbour
pair interactions, both bilinear and biquadratic, are investigated for two-
dimensional lattices using an approximate renormalization-group approach
of the Migdal–Kadanoff type. The set of fixed points and flows provide the
characteristic phase diagrams, in the case of repulsive biquadratic interaction,
featuring four ordered phases including high-entropy ferrimagnetic and
staggered quadrupolar phases. Successive phase transitions and multicritical
points are also found.

1. Introduction

The Blume–Emery–Griffiths (BEG) model [1], which is the most general spin-1 Ising model
with nearest-neighbour interactions, both bilinear and biquadratic, in which a crystal field
is included, was originally investigated in the context of superfluidity and phase separation
in helium mixtures [1]. It is the basic lattice gas model for all of the physical systems
characterized by three different local states at each lattice site, and has since been widely
used in describing a variety of physical phenomena, ranging from solid–liquid gas mixtures
[2], through multicomponent fluid and liquid-crystal mixtures [2], to the phase changes in
microemulsions [3].

Most of the recent works on the phase transitions of the BEG model have been devoted to
the case of repulsive biquadratic interaction, relevant to ordering in semiconductor alloys [4]
and electron conduction models [5], because it may be expected to give a rich phase diagram
due to the competition of interactions. In this case, a very rich phase diagram was obtained for
three-dimensional lattices by using the mean-field approximation (MFA) [6], featuring single
and double re-entrancy regions and ferrimagnetic phases.

This model can also be generalized to describe the BEG model by inclusion of higher spin
values. A spin-3/2 BEG model, in which each spin variable can take four different values, is
probably the simplest extension of the general spin-1 Ising model, which can exhibit a variety
of multicritical phenomena accompanied with the onset of first- and second-order transitions.
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The spin-3/2 BEG model, with dipolar and quadrupolar exchange interactions, was initially
introduced [7] in connection with experimental results on successive phase transitions in some
rare-earth compounds such as DyVO4, and its phase diagram was determined within the MFA.
A modified version of the spin-3/2 model, including an octupolar exchange term, was later
introduced [8] to describe tricritical properties in ternary fluid mixtures; this was also solved
within the MFA. Recently, the spin-3/2 BEG model with bilinear (J ) and biquadratic (K)

nearest-neighbour interactions and a single-ion uniaxial crystal-field anisotropy (�) has been
studied with the use both of the MFA and Monte Carlo (MC) simulations [9], an effective-field
theory based on the differential operator technique [10], and by means of a position-space
renormalization-group (PSRG) calculation [11].

It has been shown that the spin-3/2 BEG model exhibits various phase transitions of first
and higher order against the temperature. In particular, as long as the biquadratic interaction
is ferromagnetic (K > 0) there occurs, at a higher temperature, a second-order transition
line separating the paramagnetic phase from two distinct ferromagnetic phases. At lower
temperature, these ordered phases are separated by a first-order transition line, in the region
of negative values of �. On the other hand, when repulsive biquadratic (K < 0) interaction
and � = 0 are considered, where two sublattice structures must be introduced, the results for
the K-dependent part of the phase diagram present a paramagnetic phase also separated by a
second-order transition line from the ferromagnetic phases characterized by equal values of
the sublattice magnetizations, but large and small quadrupolar momenta. Within this ordered
region lies a ferrimagnetic phase, distinguished by unequal sublattice magnetizations and
sublattice symmetry breaking, separated by a second-order transition line from the region of
equal sublattice magnetizations.

Previous studies undertaken within the spin-3/2 BEG model have only considered some
portions of the phase diagram. By contrast, in the research reported here, the global phase
diagram of the model is studied in considerable detail using a PSRG technique based on
the Migdal–Kadanoff (MK) [12, 13] recursion relations, obtained by employing the trans-
formation of variables under a length scaling. We complete an earlier renormalization-group
study [11] and present the major results for the phase diagram of the BEG model for a two-
dimensional (d = 2) square lattice with repulsive biquadratic interactions. It has been shown
that such a spin system is still rich enough to exhibit phase diagrams of considerable richness,
including four ordered phases among which there are high-entropy ferrimagnetic and staggered
quadrupolar orderings. The set of fixed points and flows provide the complete characteristic
phase diagrams. On the basis of the topology of the PSRG flows linking the various fixed points,
first we determine the unified global phase diagram in (J, K, �) space, with supplementary
representative cross sections of constant K/J , temperature 1/J and chemical potential �/J ,
which will be used later for comparison with the results obtained from other treatments carried
out for this model. Then, local analysis for the recursion relations near the fixed points gives
all of the critical exponents.

An outline of the paper is as follows. After defining the model and describing the
approximate recursion relations embodying the renormalization group in section 2, we discuss
the global phase diagram and some features of the fixed-point structure in section 3. Section
4 contains our conclusions.

2. Model and method

We study the spin-3/2 BEG model described by the following reduced Hamiltonian:

−βH = J
∑
〈ij〉

SiSj + K
∑
〈ij〉

S2
i S

2
j + �

∑
i

S2
i (1)
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where the spins Si located at site i on a discrete lattice can take the values ±3/2 and ±1/2,
and the first two summations run over all nearest-neighbour spins. The terms on the right-
hand side describe, respectively, the bilinear exchange, biquadratic exchange, and crystal-field
interactions. We restrict this study to J > 0 (since we are interested in the ferromagnetic case)
and K < 0 (so sublattice order parameters must be introduced).

In order to obtain self-consistent recursion relations, the adding of a new coupling

+ C
∑
〈ij〉

(SiS
3
j + S3

i Sj ) + F
∑
〈ij〉

S3
i S

3
j (2)

to the Hamiltonian must be considered. Here we will not be concerned about the physical
origin of these couplings, and we will treat them as parameters in the calculations.

The different phases of the BEG model can be characterized by two order parameters,
corresponding to the magnetizations and quadrupolar moments of the two sublattices a and b:

ma = 〈Sa〉 mb = 〈Sb〉 qa = 〈S2
a 〉 qb = 〈S2

b 〉
where 〈· · ·〉 denotes the thermal average.

The values of these parameters define six phases with different symmetries. These are:

(1) two paramagnetic phases labelled P3/2 and P1/2 distinguished by ma = mb = 0 with
qa = qb > 5/4, and qa = qb < 5/4, respectively;

(2) two ferromagnetic phases referred to as F3/2 and F1/2 characterized, respectively, by
ma = mb �= 0 with qa = qb > 5/4, and qa = qb < 5/4;

(3) a staggered quadrupolar (SQ) phase which has ma = mb = 0 and qa �= qb; and
(4) a ferrimagnetic (FR) phase distinguished by non-zero magnetizations and sublattice

symmetry breaking (ma �= mb �= 0 and qa �= qb).

For a more reliable qualitative understanding of features of the phase transitions of the
model, we apply a MK renormalization-group method, which combines decimation and bond
shifting. In what follows we specialize to the ‘series–parallel’ method in which a one-
dimensional (exact) decimation is first used to combine bonds in series and then bond shifting
accomplishes the parallel combination of bonds. The main advantage of this scheme is its
simplicity. One can very easily obtain approximate recursion relations and find the fixed
points and the critical exponents. In this scheme it is also possible to compute non-universal
quantities like the critical temperature or the free energy as a function of the temperature.
Nonetheless, it has several shortcomings:

(1) It should be clear from the way in which it was carried out for this spin problem that
the MK method does not conserve the dimensionality of the parameter space, and may
miss certain features of the phase diagram owing to the restricted flow space in which
the renormalization must of necessity be carried out. Therefore, it should be stressed
that a complete description of the phase transitions requires consideration of an enlarged
parameter space for a d-dimensional lattice, which involves lengthy calculations and a
large amount of computation.

(2) It turns out that the MK method considers only the interactions among the spins of a
finite cluster, neglecting the effect of the surrounding spins and thus underestimating the
interactions among the spins, which leads to a lower value of the critical temperature.
If larger clusters are used, further-neighbour and multispin couplings are generated, and
allowance for these in an extended parameter space leads to a quite satisfactory results
even with moderate-sized clusters.

Provided that such limitations are understood, the MK renormalization-group method can
be an extremely valuable one in many situations requiring a direct approach. It is tractable in
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all space dimensionalities; therefore we shall give the recursion relations for a d-dimensional
hypercubic spin-3/2 BEG model after briefly describing the method.

We choose the length-rescaling factor b as an odd integer so as to preserve, under scaling,
the possible sublattice-symmetry-breaking character of the system. In the present study we
use b = 3 and consider a one-dimensional chain of four spins S1, S2, S3, and S4 coupled by
the interactions J , K , �, C, and F . The reduced Hamiltonian of this four-spin cluster reads

− βH = J (S1S2 + S2S3 + S3S4) + K(S2
1S2

2 + S2
2S2

3 + S2
3S2

4 ) +
�

2d
(S2

1 + 2S2
2 + 2S2

3 + S2
4 )

+ C(S1S
3
2 + S3

1S2 + S2S
3
3 + S3

2S3 + S3S
3
4 + S3

3S4) + F(S3
1S

3
2 + S3

2S
3
3 + S3

3S
3
4).

(3)

The coefficient in the crystal-field term takes into account the coordination of the sites 1, 2, 3,
and 4 in the d-dimensional hypercubic lattice. The rescaling transformation involves taking
the trace over spins S2 and S3, which generates the transformed reduced Hamiltonian of the
system; after series combination this gives

− βH̃ = J̃ S1S4 + K̃S2
1S2

4 +
�̃

2d
(S2

1 + S2
4 ) + C̃(S1S

3
4 + S3

1S4) + F̃ S3
1S

3
4 (4)

where J̃ , K̃ , �̃, C̃, and F̃ are the scaled one-dimensional interactions, resulting from the series
combination, given as functions of J , K , �, C, and F .

Since we are interested in the scalings of J , K , and � only, we may use here the
unnormalized Boltzmann probability P = exp(−βH).

Maintaining the same form of P under scaling, we have for the series combination of three
bonds by decimating the two intermediate spins

exp(−βH̃ (S1, S4)) = TrS2,S3

[
3∏

i=1,j=i+1

exp(−βH(Si, Sj ))

]
. (5)

Equation (5) and the bond-shifting process yield the finally renormalized couplings J ′,
K ′, �′, C ′, and F ′ of the transformed system as functions of the original ones. They are simply

J ′ = bd−1J̃ (J, K, �, C, F )

K ′ = bd−1K̃(J, K, �, C, F )

�′ = bd−1�̃(J, K, �, C, F )

C ′ = bd−1C̃(J, K, �, C, F )

F ′ = bd−1F̃ (J, K, �, C, F ).

In translationally invariant systems, one is at a critical point when the interaction
parameters after rescaling are the same as those before, which is known as the fixed point.
This is because the correlation length has gone to infinity and so the system is invariant
under a change in the length scale. Thus, in terms of the renormalization-group scheme,
all phases and all phase transitions are derived from the global study of PSRG flows in
Hamiltonian space, which are governed by the fixed points. The various fixed points of
the transformation have been determined and classified according to their relative stability and
connectivity. For repulsive biquadratic (K < 0) interactions we find a total of 14 different
fixed points underlying the structure of the system, yielding critical (second-order) phase
boundaries and multicritical points. Amongst them there are six trivial fixed points which
correspond, respectively, to the six different phases. Two of them, namely (0, −∞, +∞, 0, 0)

and (+∞, −∞, +∞, −∞, −∞), are completely stable and characterize, respectively, the
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staggered quadrupolar and ferrimagnetic phases, whereas eight distinct non-trivial fixed points
are unstable and provide the second-order phase transitions in our phase diagram. The
coordinates of the various fixed points and the phase transitions that they characterize are given
in table 1. It is worth noting that none of the fixed points listed in table 1 fulfils the Nienhuis
and Nauenberg conditions [14] for seeing first-order transitions in the PSRG approach.

Table 1. Coordinates and classification of the fixed points underlying the phase diagram of the
spin-3/2 BEG model in two dimensions with repulsive biquadratic coupling.

Coordinates
Fixed points (J ∗, K∗, �∗, C∗, F ∗) Type

P3/2 (0, 0, +∞, 0, 0) Sink for (ma = mb = 0
and qa = qb > 5/4) phase

P1/2 (0, 0, −∞, 0, 0) Sink for (ma = mb = 0
and qa = qb < 5/4) phase

F3/2 (+∞, −∞, +∞, −∞, +∞) Sink for (ma = mb �= 0
and qa = qb > 5/4) phase

F1/2 (+∞, −∞, −∞, −∞, +∞) Sink for (ma = mb �= 0
and qa = qb < 5/4) phase

SQ (0, −∞, +∞, 0, 0) Sink for (ma = mb = 0
and qa �= qb) phase

FR (+∞, −∞, +∞, −∞, −∞) Sink for (ma �= mb

and qa �= qb) phase
M1 (0, −0.8696, 3.0563, 0, 0) Critical surface
M2 (0, −0.8695, 5.6398, 0, 0) Critical surface
M3 (0, −0.7218, 3.6090, 0, 0) Critical line
Z (0.2706, −∞, +∞, −0.6015, 0.4812) Critical surface
C3/2 (0.0050, −0.0216, +∞, −0.020, 0.0802) Critical surface
C1/2 (3.653, −0.0215, −∞, −1.622, 0.7206) Critical surface
I3/2 (+∞, −∞, +∞, −∞, −0.0885) Critical surface
I1/2 (+∞, 0.515, −2.5798, −∞, −0.5170) Critical surface

Critical (higher-order) renormalization-group exponents yi , associated with the non-trivial
fixed points and listed in table 2, are defined by

λi = byi (6)

where λi denotes an eigenvalue of the recursion relations linearized at the appropriate fixed
points whose domain is the locus of the transition in question, and b = 3 is the rescaling factor
of the renormalization-group transformation. The eigenvalues λi give the critical exponents

Table 2. Critical exponents of the higher-order fixed points.

Eigenvalue exponents

Fixed points yJ yK y�

M1 2.457 0.765 0
M2 2.457 0.765 0
M3 2.249 1.145 0
Z 3.0 2.249 1.145
C1/2 3.0 2.249 1.145
C3/2 3.0 2.252 1.146
I1/2 3.0 3.0 2.562
I3/2 3.0 3.0 0
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and the direction of flow around the fixed point. Unlike the eigenvalues λi , the eigenvalue
exponents yi are transformation independent (i.e., independent of b). For a particular λi

greater than 1, the fixed point is unstable with respect to perturbations in the direction of
the corresponding eigenvector. The non-universal character in the PSRG is governed by the
presence of marginal fixed points whose eigenvalues must be equal to 1. This is not fulfilled
for any of the fixed points in table 2.

3. Results and discussion

As previously discussed [15], the MK type of recursion relations are eminently suited to
providing insight into the qualitative properties of the spin-1 BEG model. Here, we make use
of this approximation to determine the phase diagram of the spin-3/2 BEG model, with single-
site and nearest-neighbour interactions. The main attention in our investigation was focused
on the case of repulsive biquadratic (K < 0) interaction, where the staggered quadrupolar and
ferrimagnetic phases are particularly of interest, and where we obtain a remarkable difference
from the MFA results.

Before discussing the general situation, let us consider the particular case corresponding
to the invariant subspace J = C = F = 0. Following Griffiths symmetry [16] for the spin-1
BEG model, we note here that the system in this case reduces to an antiferromagnetic spin-1/2
Ising model in an external magnetic field.

Defining a new variable τi at each site i by τi = S2
i − 5/4, and substituting into (1), one

obtains the equivalent Hamiltonian

−βH = Jτ

∑
〈ij〉

τiτj + hτ

∑
i

τi (7)

with τi = ±1 and the new interaction constants are related to the original ones by

Jτ = K < 0

hτ = � +
5

4
zK

where z is the number of nearest neighbours of a site (four in our square lattice).
This is the spin-1/2 Ising model in a magnetic field hτ . The MK recursion relations for

this model have only three non-trivial fixed points, namely M1, M2, and M3, of coordinates
(−0.869, 3.056), (−0.869, 5.639), and (−0.721, 3.609), respectively. The first and the second
fixed points characterize the critical transition line separating the distinct domains which are
the regions of attraction of the three phase sinks SQ, P3/2, and P1/2, respectively, of coordinates
(−∞, +∞), (0, +∞), and (0, −∞), whereas the last fixed point describes the coexistence of
the three different phases, and characterizes the antiferromagnetic transition in zero field.

We now come back to the general situation for the BEG model. On iterating the
renormalization-group recursion relations, several interesting results emerge from our study.
For repulsive biquadratic coupling, first we obtain the complete set of fixed points for the
recursion relations in a five-dimensional parameter space and study the connectivity of the
renormalization-group flows linking them. Second, we determine the unified global phase
diagram of the BEG model in the space of the three parameters (J, K, �), displayed in figure 1,
in which the locations of the various phase sinks have been indicated. This picture holds
irrespective of the space dimensionality d, since the results are qualitatively similar for d � 2.
Therefore, in the following we will be concerned almost entirely with the two-dimensional
(d = 2) square lattice, though the same recursion relations can be applied in other dimensions
as well.
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Figure 1. The spin-3/2 BEG phase diagram, in the (J, K, �) space, obtained by the Migdal–
Kadanoff renormalization-group treatment, for repulsive biquadratic (K < 0) interaction.

The volume (J > 0, K < 0) under study is divided by transition surfaces into six
regions. Two of them are occupied by the paramagnetic phases P3/2 and P1/2. In the
remaining regions, four ordered phases among which two ferromagnetic phases referred to
as F3/2 and F1/2, together with staggered quadrupolar (SQ) and ferrimagnetic (FR) phases,
are found. We observe also seven important boundary surfaces of critical (second-order)
phase transitions. The ferromagnetic (F3/2) phase is separated from the paramagnetic (P3/2),
staggered quadrupolar (SQ), and ferrimagnetic (FR) phases by three critical transition surfaces
characterized, respectively, by the fixed points C3/2, Z, and I3/2, whereas the fixed points C1/2

and I1/2 describe two additional second-order transition surfaces separating the ferromagnetic
(F1/2) phase from both the paramagnetic (P1/2) and ferrimagnetic (FR) phases, respectively.
On the other hand, at a higher temperature, the SQ phase is separated from the two distinct
paramagnetic phases by two critical surfaces controlled by the fixed points M1 and M2, which
have in common a critical line represented by the fixed point M3, where the three phases coexist.
This line is the locus of points where a second-order transition line meets two second-order
transition lines. A point of this kind will be called a multicritical point.

Representative cross sections of constant K/J , extended to negative values, in terms
of temperature 1/J and chemical potential �/J , are shown in figures 2(a) and 2(b). They
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Figure 2. The representative phase diagrams obtained from the global position-space renorm-
alization-group method, for K/J values of (a) −0.6 and (b) −1.5.

exhibit the two additional ordered phases which have sublattice symmetry breaking. Moreover,
according to the values of the ratio K/J , and as the temperature is lowered at fixed �/J , there
occurs a single or successive phase transitions which are of second order.

For values −1 < K/J < −1/4 (figure 2(a)), the ferrimagnetic phase lies, at low
temperature, within the ferromagnetic phase, and three separate second-order transitions
are found. There are transitions from the paramagnetic to a ferromagnetic phase, from the
ferromagnetic to a ferrimagnetic phase and from the ferrimagnetic back to a ferromagnetic
phase. One should note also no re-entrance occurring in the PSRG phase diagram, contrasting
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with previous MFA results where a pronounced re-entrance is observed in the interval
−1/3 < K/J < −1.73. We note here that the shape of the resulting phase boundary is
in agreement with that of the MC simulations [9].

For values of K/J < −1 (figure 2(b)), the staggered quadrupolar phase occurs at high
temperatures, whereas, at finite temperature, this phase is always separated from the ferri-
magnetic one by a ferromagnetic phase. Thus, as the temperature is lowered at fixed �/J in
the region 3 < �/J < 6, there occur phase transitions successively between the paramagnetic,
staggered quadrupolar, ferromagnetic, and ferrimagnetic phases. All of the corresponding
phase boundaries are of second order.

One should also notice that, unlike in previous studies on the spin-1 BEG model, where
the ferrimagnetic phase has never appeared at all temperatures when using recursion relations
of the MK type, here, on increasing the spin values to S = 3/2, the method that we have
used shows a stable fixed point characterizing the ferrimagnetic phase over a large region at
low temperature. On the other hand, while the staggered quadrupolar phase appears at low
temperature for the spin-1 BEG model, in the spin-3/2 model this phase is completely stable at
high temperature and separated from the ferrimagnetic one by a ferromagnetic phase, whereas
the MFA phase diagram for the spin-1 BEG model [6] exhibits phase transitions between the
SQ and FR phases which can be first order, second order, or tricritical.

4. Conclusions

We have determined the critical properties of the square-lattice spin-3/2 BEG model, with
repulsive biquadratic interaction, by using the Migdal–Kadanoff method of decimation
followed by bond shifting. Treatments are provided for a discrete value of the length rescaling
factor b. In particular, we have computed the phase boundaries which separate the disordered
domain from any of the four distinct ordered domains. We have located eight unstable fixed
points characterizing the various phase transitions, with their global connectivity and local
critical exponents. The global phase diagram in (J, K, �) space (with J > 0 and K < 0)
is found to have seven important boundary surfaces of critical phase transitions between
paramagnetic, ferromagnetic, staggered quadrupolar, and ferrimagnetic phases.
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